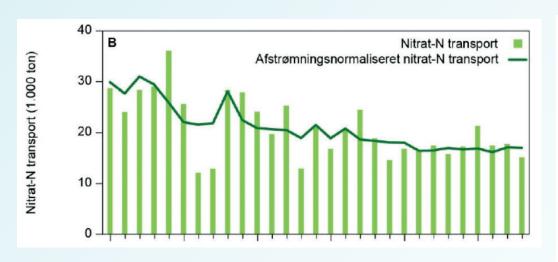
Odense-Fjord: WATERDRIVE Case Area in Dänemark

Frank Bondgaard, Anne Sloth SEGES

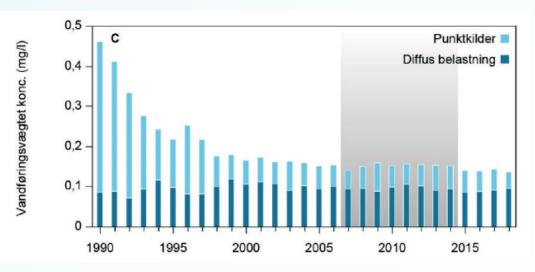


www.waterdrive.pl

1/16

Leaching of nutrients has not decreased much in the last 10 years in Denmark

Reduction of nitrate from 1990-2018



Development of measured sea load catchments (sum of 77 catchments) as calculated annual sum for nitrate-N transport (light green bars) and runoff normalized nitrate N-transport (green line)

Source: Thodsen, H, Tornbjerg, H, Rasmussen J.J, Bøgestrand, J., Larsen, S.E., Ovesen, N.B.; Blicher-Mathiesen, G., Kjeldgaard, A. & Windolf, J. 2019. NOVANA. Aarhus Universitet, DCE

- Nationalt center for Miljø og Energi, 72 s.
- Videnskabelig rapport 353

Reduction of phosphorous from 1990-2018

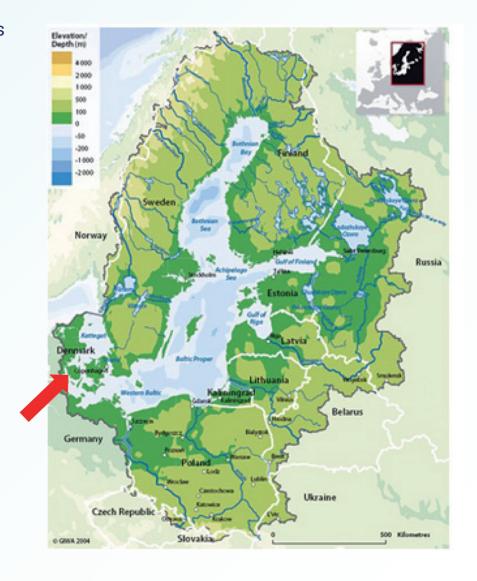
Water flow weighted phosphorus concentration for 1990 to 2018.

Phosphorus inputs from diffuse sources (dark bars) and effluent discharges from point sources (light bars)

Source: Thodsen, H, Tornbjerg, H, Rasmussen J.J., Bøgestrand, J., Larsen, S.E., Ovesen, N.B.; Blicher-Mathiesen, G., Kjeldgaard, A. & Windolf, J. 2019. NOVANA. Aarhus Universitet, DCE

- Nationalt center for Miljø og Energi, 72 s.
- Videnskabelig rapport 353

Odense Fjord im Ostseeraum


Das Einzugsgebiet des Odense Fjord ist ein Teil des Hauptgewässers Einzugsgebiet des Odense Fjords und bildet ein Gebiet von 105.600 ha, von denen die landwirtschaftliche Fläche ausmacht ca. 63.960 ha.

Im Waterdrive-Projekt das Einzugsgebiet des Odense Fjords wurde als Fallbereich ausgewählt.

Im Einzugsgebiet zum Odensefjord 2 Teileinzugsgebiete wurden ausgewählt.

In Dänemark heißen sie ID15, weil jeder von ihnen umfasst rund 1.500 Hektar Ackerland.

In Dänemark gibt es ungefähr 3.000 ID15-Teileinzugsgebiete.

Odense-Fjord

Gemäß dem Bewirtschaftungsplan für das Einzugsgebiet Stickstoffemissionen in den Odense Fjord müssen um insgesamt 549,3 Tonnen N reduziert werden auf 63.960 ha landwirtschaftlicher Nutzfläche.

Davon hat eine Reduktion von 345,8 Tonnen N bis 2021 zu erreichen. Die verbleibende Reduzierung Anforderung wurde auf die verschoben dritte Wasserplanperiode.

Bebaute Feuchtgebiete zur Nitratreduktion

Der Effekt einer Pflanzenkläranlage wird mit 1,1 % berechnet des Einzugsgebiets als Feuchtgebiet, seitdem ist die Größe, die ich normalerweise verwende.

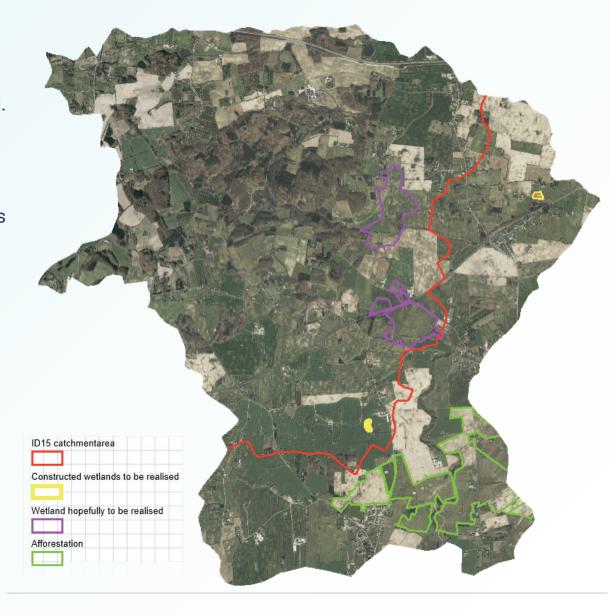
Beispiel: Wenn das Einzugsgebiet 100 Hektar groß ist.

Dann muss der Bauer 1,1 Hektar Land zuweisen

zur Pflanzenkläranlage.

Die Kosten des Feuchtgebiets werden mit 1 % berechnet. des Einzugsgebiets als Fläche des Feuchtgebiets, seitdem ist die Höhe, aus der sich der Zuschuss errechnet.

[Quelle: Technische Angaben in der dänischen Richtlinie für Pflanzenkläranlagen in Dänemark 2020]



Konstruierte Feuchtgebiete

Der zu erwartende Aufwand bei Pflanzenkläranlagen beträgt laut Wasserplan 2 (2015 – 2021) 67,7 Tonnen Stickstoff pro Jahr im Einzugsgebiet des Odense Fjord.

Eine Pflanzenkläranlage hat eine N-Einwirkung von ca.
580 kg N/ha/Jahr im Durchschnitt. Dies bedeutet, dass
117 Hektar Pflanzenkläranlagen
(67.700 kg: 580 kg/ha) festgelegt werden
vor 2021.

Ein ID15-Einzugsgebiet wird mit 1500 Hektar definiert Ackerland, also dürften es rund 43 ID15 sein Einzugsgebiete im Einzugsgebiet des Odense Fjord, das bedeutet 3 Hektar gebaut Feuchtgebiet/ID15 – Einzugsgebiet vor 2021.

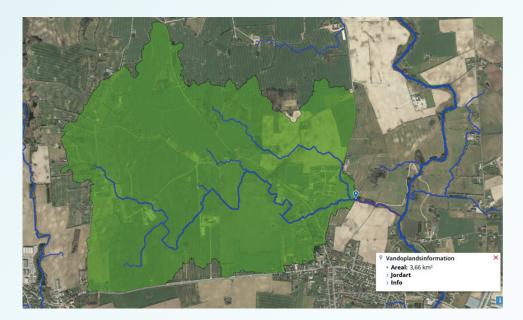
Einzugsoffizier und Hauptdarsteller

Die Einrichtung des Systems der Einzugsgebietsbeauftragten versucht, die Umsetzung von Umweltmaßnahmen auf lokaler Ebene zu erleichtern. Die Arbeit wird vom landwirtschaftlichen Beratungsdienst in Dänemark erledigt, weil das Vertrauen hier bereits besteht. Im Waterdive-Projekt erleichterten Einzugsgebietsbeauftragte die Zusammenarbeit zwischen Landbesitzern aus zwei Teileinzugsgebieten und Vertreter der Gemeinden Odense und Assens

Fokusgruppentreffen mit Grundeigentümern und Kommunen:

Einzugsoffizier und Hauptdarsteller

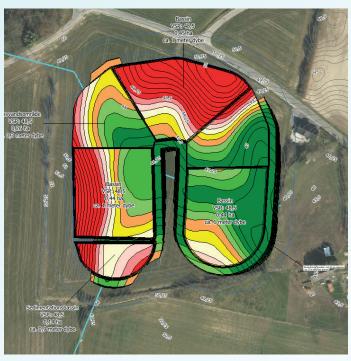
Einzelgespräche mit Grundstückseigentümern über Entwässerungssysteme



Einzugsoffizier und Hauptdarsteller

Theorie und Praxis: Treffen und Feldbesuche bei Landwirten korrigierten und ergänzten unsere Daten zum Standort Kanalisation und damit die Größe des Einzugsgebietes.

Einzugsgebiet geschätzt in SCALGO


Entwässerung und Einzugsgebiet durch Feldbesuche durchgeführt

Die Subventionen für Pflanzenkläranlagen, 2020

	Basic grants [Euro] 1 € = 7,45 kr.	Price per sqm. water [Euro]
Mandatory parts	20,000	5,10
Establishment of a pump	9,262	1,21
Planting plants	369	0,13
Making a path	1,074	:-
Expences for construction consultancy	1,779	-
Authority permits	832	-
Archaeological preliminary investigations	1,584	0,34

Größen- und N&P-Effektberechnungen basieren auf einer Tabelle hergestellt von SEGES

Schätzung der Bodenverschiebung

TEMA A	NAVN A	Areal, Ha	Areal, kvm	Arealfordeling, %	Afgraves, kbm	Påfyldes, kbm	Volumen, kbm
Bassin	Bassin	1,33	13.311	0,0	55.024	0	55.024
Lavvandsområde	Lavvandsområde	0,52	5.201	0,0	17.311	0	17.311
Sedimentationsbassin	Sedimentationsbassin	0,14	1.426	0,0	6.245	0	6.245
Bassin	SUM	1,33	13.311	66,8	55.024	0	55.024
Lavvandsområde	SUM	0,52	5.201	26,1	17.311	0	17.311
Sedimentationsbassin	SUM	0,14	1.426	7,2	6.245	0	6.245
SUM	SUM	1,99	19.938	100,0	78.580	0	78.580
SUM	SUM	1,99	19.938	0,0	78.580	0	78.580

N & P-Reduktion

ID15-nummer	42.320.719	1135 ha LOOP-opland Fyn (lerjord)					
Sted	Virkemiddel	Drænopland ha	Omdriftsprocent %	Virkemiddel ha	Effekt kg N pr. ha virkemiddel	Effekt af virkemiddel kg N	Effekt af virkemiddel kg P
83.729	Minivådområde	66	73	0,726	579,4	307	2,4 - 2,8
83.103	Minivådområde	92	80	1,012	579,4	469	3,4 - 3,9
82.736	Minivådområde	42	69	0,462	579,4	185	1,6 - 1,8
82.983	Minivådområde	37	88	0,407	579,4	208	1,4 - 1,6
82.425	Minivådområde	51	89	0,561	579,4	289	1,9 - 2,1
76.550	Minivådområde	366	62	4,026	579,4	1446	13,5 - 15,4
	Sum	654		7,194		2904	24,2 - 27,5

Mögliche Pflanzenkläranlagen (theoretisch) und Fläche der Aufforstung in ID15 42.320.719

Punkte an den potentiellen Stellen, wo das gekostet hat ist berechnet. Die anderen Punkte sind irrelevant in dieser Verbindung.

Geschätzte Kosten nach Einzugsgebiet ID15 42.320.719

Location number	Catchment area [hectare]	Constructed wetland area [sqm]	N-effect [kg N/year]	Total cost of the measure [Euro] (1 Euro=7,45 dk)
83.729	55	5.500	284	70.275
82.983	21	2.100	123	47.228
83.103	92	9.200	481	95.356
82.736	42	4.200	201	61.463
82425, adjusted	87	8.700	366	91.966
76550, adjusted	247	24.700	1.023	200.423
Total	544	54.400	2.478	566.711

Die Gesamtfläche des Projekts wird auf 1,75 % der Einzugsgebiete geschätzt, was 9,5 Hektar entspricht oder 60.000 € als einmalige Entschädigung

Objektive Ursachen, die Projekte stoppen:

- Zu wenig Ackerland in Rotation im Einzugsgebiet die Anforderung beträgt 80 % der Entwässerungsfläche, um Fördermittel beantragen zu können.
- Der Ort, an dem der Landwirt eine Maßnahme durchführen möchte, ist nicht geeignet wie vom Staat definiert, also darf er keine Maßnahme treffen an dieser Stelle.
- Mangel an Liquidität. Obwohl die Landbesitzer/Bauern 50 %
 des Stipendiums, bevor sie die Ausgaben hatten, die nicht jeder hat
 die Liquidität, um Geld für die Gründungskosten auszugeben
 die Pflanzenkläranlage.
- Die Abflüsse liegen zu tief, daher ist eine Pumpe erforderlich. Viele Bauern sind nicht so scharf darauf, eine Pumpe zu verwenden, es sei denn, sie werden besser entwässert Felder gleichzeitig. Sie wollen den Betrieb nicht bezahlen müssen Kosten der Pumpe für die nächsten 10 Jahre, und sei es nur um des Willens willen der Pflanzenkläranlage.
- Der Abfluss ist kein Abfluss, sondern ein Rohrbach, was bedeutet, dass einige Kommunen erlauben uns nicht, das Wasser durchzuleiten ein bebautes Feuchtgebiet.

Vorschläge für die Zukunft:

- Eine stärkere Zusammenarbeit zwischen Landbesitzern, Landwirten, Einzugsgebietsbeamte, Kommunen, die Naturbehörde und lokalen Behörden. Gemeinsam haben sie die Fähigkeiten zum Schutz der Umwelt und der Natur.
- Catchment Officers sind etabliert, aber sektorenübergreifend Einzugsgebietsteams könnten eine Option sein
- Langfristige Finanzierung von Einzugsgebietsbeauftragten/ Einzugsgebietsteams
- Fördersysteme im Programm zur Entwicklung des ländlichen Raums (EPLR) die multiakteurs- und sektorübergreifend handeln und finanzieren können Zusammenarbeit.
- Das EPLR, das sich mehr auf die Lösung der Herausforderungen konzentriert und nicht sind zu fix, also agilere RDP-Programme mit höheren Abschlüssen der Freiheit.
- Ändern Sie die RDP-Programme, wenn sie nicht funktionieren schneller vorankommen.
- Verlassen Sie niemals einen Demonstrations-/Fallbereich ohne Fortschritt.

Odense-Fjord: WATERDRIVE Case Area in Dänemark

Frank Bondgaard, Anne Sloth SEGES

